Can the Ca2+ hypothesis and the Ca2+-voltage hypothesis for neurotransmitter release be reconciled?

نویسندگان

  • Hanna Parnas
  • J-C Valle-Lisboa
  • Lee A Segel
چکیده

It is well established that Ca2+ plays a key role in promoting the physiological depolarization-induced release (DIR) of neurotransmitters from nerve terminals (Ca2+ hypothesis). Yet, evidence has accumulated for the Ca2+-voltage hypothesis, which states that not only is Ca2+ required, but membrane potential as such also plays a pivotal role in promoting DIR. An essential aspect of the Ca2+-voltage hypothesis is that it is depolarization that is responsible for the initiation of release. This assertion seems to be contradicted by recent experiments wherein release was triggered by high concentrations of intracellular Ca2+ in the absence of depolarization [calcium-induced release (CIR)]. Here we show that there is no contradiction between CIR and the Ca2+-voltage hypothesis. Rather, CIR can be looked at as a manifestation of spontaneous release under conditions of high intracellular Ca2+ concentration. Spontaneous release in turn is governed by a subset of the molecular scheme for DIR, under conditions of no depolarization. Prevailing estimates for the intracellular calcium concentration, [Ca2+]i, in physiological DIR rely on experiments under conditions of CIR. Our theory suggests that these estimates are too high, because depolarization is absent in these experiments and [Ca2+]i is held at high levels for an extended period.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Brevity of the Ca2+ microdomain and active zone geometry prevent Ca2+-sensor saturation for neurotransmitter release.

The brief time course of the calcium (Ca2+) channel opening combined with the molecular-level colocalization of Ca2+ channels and synaptic vesicles in presynaptic terminals predict sub-millisecond calcium concentration ([Ca2+]) transients of > or = 100 microM in the immediate vicinity of the vesicle. This [Ca2+] is much higher than some of the recent estimates for the equilibrium dissociation c...

متن کامل

A clockwork hypothesis: synaptic release by rod photoreceptors must be regular.

We can see at light intensities much lower than an average of one photon per rod photoreceptor, demonstrating that rods must be able to transmit a signal after absorption of a single photon. However, activation of one rhodopsin molecule (Rh*) hyperpolarizes a mammalian rod by just 1 mV. Based on the properties of the voltage-dependent Ca2+ channel and data on [Ca2+] in the rod synaptic terminal...

متن کامل

Selective inhibition of spontaneous but not Ca2+ -dependent release machinery by presynaptic group II mGluRs in rat cerebellar slices.

Two main forms of neurotransmitter release are known: action potential-evoked and spontaneous release. Action potential-evoked release depends on Ca2+ entry through voltage-gated Ca2+ channels, whereas spontaneous release is thought to be Ca2+ -independent. Generally, spontaneous and action potential-evoked release are believed to use the same release machinery to release neurotransmitter. This...

متن کامل

Receptor-mediated regulation of calcium channels and neurotransmitter release.

Ca2+ influx into the nerve terminal is normally the trigger for the release of neurotransmitters. Many neurons possess presynaptic receptors whose activation results in changes in the quantity of neurotransmitter released by an action potential. This paper reviews studies that show that presynaptic receptors can regulate the activity of Ca2+ channels in the nerve terminal, resulting in changes ...

متن کامل

Consequences of molecular-level Ca2+ channel and synaptic vesicle colocalization for the Ca2+ microdomain and neurotransmitter exocytosis: a monte carlo study.

Morphological and biochemical studies indicate association between voltage-gated Ca2+ channels and the vesicle docking complex at vertebrate presynaptic active zones, which constrain the separation between some Ca2+ channels and vesicles to 20 nm or less. To address the effect of the precise geometrical relationship among the vesicles, the Ca2+ channel, and the proteins of the release machinery...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 99 26  شماره 

صفحات  -

تاریخ انتشار 2002